On 2-adic orders of some binomial sums

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On 2-adic Orders of Some Binomial Sums

We prove that for any nonnegative integers n and r the binomial sum n ∑ k=−n ( 2n n− k ) k is divisible by 22n−min{α(n),α(r)}, where α(n) denotes the number of 1s in the binary expansion of n. This confirms a recent conjecture of Guo and Zeng [J. Number Theory, 130(2010), 172–186]. In 1976 Shapiro [3] introduced the Catalan triangle ( k n ( 2n n−k ) )n>k>1 and determined the sum of entries in t...

متن کامل

Some Classes of Alternating Weighted Binomial Sums

In this paper, we consider three classes of generalized alternating weighted binomial sums of the form n ∑ i=0 ( n i ) (−1) f (n, i, k, t) where f (n, i, k, t) will be chosen as UktiVkn−k(t+2)i, UktiVkn−kti and UtkiV(k+1)tn−(k+2)ti. We use the Binet formula and the Newton binomial formula to prove the claimed results. Further we present some interesting examples of our results.

متن کامل

A Congruential Identity and the 2-adic Order of Lacunary Sums of Binomial Coefficients

In this paper we obtain a universal lower bound on the 2-adic order of lacunary sums of binomial coefficients. By means of necessary and sufficient conditions, we determine the set of values for which the bound is achieved and show the periodicity of the set. We prove a congruential identity for the corresponding generating function. Our approach gives an alternative and transparent proof for s...

متن کامل

Some Binomial Sums Involving Absolute Values

We consider several families of binomial sum identities whose definition involves the absolute value function. In particular, we consider centered double sums of the form

متن کامل

On Sums of Binomial Coefficients

In this paper we study recurrences concerning the combinatorial sum [n r ] m = ∑ k≡r (mod m) (n k ) and the alternate sum ∑ k≡r (mod m)(−1) (n k ) , where m > 0, n > 0 and r are integers. For example, we show that if n > m−1 then b(m−1)/2c ∑ i=0 (−1) (m− 1− i i )[n− 2i r − i ]

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2010

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2010.06.007